
Sample Exam Week 02
CSE 232 (Introduction to Programming II)

VERSION A

Full Name: .

Student Number: .

Instructions:
• DO NOT START/OPEN THE EXAM UNTIL TOLD TO DO SO.
• You may however write and bubble in your name, student number and exam VERSION/FORM
NUMBER (with a #2 pencil) on the front of the printed exam and bubble sheet prior to the exam
start. This exam is Version A. Your section doesn’t matter and can be ignored.
• Present your MSU ID (or other photo ID) when returning your bubble sheet and printed exam.
• Only choose one option for each question. Please mark the chosen option in both this printed exam and

the bubble sheet.
• Assume any needed #includes and using std::...; namespace declarations are performed for the

code samples.
• Every question is worth the same amount of points. There are 55 questions, but you only need 50

questions correct for a perfect score.
• No electronics are allowed to be used or worn during the exam. This means smart-watches, phones and

headphones need to be placed away in your bag.
• The exam is open note, meaning that any paper material (notes, slides, prior exams, assignments, books,

etc.) are all allowed. Please place all such material on your desk prior to the start of the exam, (so you
won’t need to rummage in your bag during the exam).
• If you have any questions during the exam or finish the exam early, please raise your hand and a proctor

will attend you.

http://xkcd.com/499/

Version A Page 1 of 16

1. Which of the following are safe to do with
a null pointer?

(a) Make a copy of it.
(b) Store a memory address in it.
(c) Make a const reference to it.
(d) Dereference it.
(e) Only (a) and (b) are safe.
(f) Only (a), (b) and (c) are safe.
(g) All of (a), (b), (c), and (d) are safe.

2. What benefit is there to using a pointer in-
stead of a reference?

(a) A pointer can more safely refer to
an object because it can be declared
const.

(b) A pointer can point to objects
and fundamental/primitive types,
whereas a reference can only refer to
objects of custom classes.

(c) A pointer can be used to do bit-wise
arithmetic, where as a reference is
limited to integer arithmetic.

(d) A pointer can refer to two objects at
the same time because it can hold
multiple addresses, whereas a refer-
ence can only return to one object.

(e) None of the above.

3. How do you stop fall-through behavior?

(a) By ensuring that you have a default
case.

(b) You cant stop fall-through, it is man-
dated by the C++ language.

(c) By ensuring that you have a break at
the end of each case.

(d) By using a conditional statement to
check for const expressions.

(e) By specifying a zero case for your con-
ditional expression.

(f) None of the above

4. What does the const in the following dec-
laration imply about x?
long * const x = &y;

(a) That the value of x (the address) can-
not be changed to point at a different
position in memory.

(b) That the value pointed at by x (the
long) cannot be changed to be a dif-
ferent value.

(c) Both of the above.
(d) Neither of the above.

5. What is the difference between x and y?
for (auto x : vec) ...

for (auto & y : vec) ...

(a) x is a copy of each element, where as
y is a reference.

(b) If y is altered, the element in vec

changes. Not so for x.
(c) Both of the above are true.
(d) None of the above are true.

6. When should you use a pointer instead of a
reference.

(a) When you need to perform pointer
arithmetic.

(b) When a library function you need re-
quires a pointer argument.

(c) When you need to store the address
of an object.

(d) All of the above are true.
(e) None of the above are true.

7. Which of the following permit 0 or more
statements?

(a) The contents of a block statement
(b) The body of an if statement
(c) A function’s body
(d) Pre-processor statements
(e) (b) and (c) are both correct.
(f) None of the above are correct.

Version A Page 2 of 16

8. Why do we recommend against using the
long and long long types for large inte-
gers?

(a) Because using them is undefined be-
havior

(b) Because int32 t and int64 t provide
more guarantees about their capacity

(c) Because they are unsigned and hence
can’t represent negative integers

(d) Because they take up more characters
in your program

(e) Because they take up too much mem-
ory and slow programs down

9. Which of the following statements would
cause a compilation error if included after
the following code?
int x = 4; int y = 7;

int const *ptr = &x;

(a) ptr = &y;

(b) ++x;

(c) ++ptr;

(d) Both (a) and (b) will cause compila-
tion errors

(e) Both (a) and (c) will cause compila-
tion errors

(f) Both (b) and (c) will cause compila-
tion errors

(g) All of (a), (b), and (c) will cause com-
pilation errors

(h) None of the above will cause an error

10. Why can you not declare a refer-
ence?

(a) Because a reference must be able to
change the value it refers to

(b) Because a reference can only be made
of a const value

(c) You can declare a reference, but only
if the reference is in a const member
function

(d) Because a reference can’t exist with-
out referring to something

(e) None of the above

11. Can you take the address of a
pointer?

(a) No, but you can make a reference to
them.

(b) No, pointers don’t exist apart from
the objects they point at

(c) Yes, pointers like all objects, have ad-
dresses

(d) Yes, but only pointers that aren’t null

12. What will be the output of the following
code?
int main() {

int a[3] = {1, 2, 3};
int *p = a;

cout << p << ’-’ << a;

}

(a) undefined
(b) Two different addresses are printed
(c) Run time error
(d) Same address is printed twice
(e) Compile time error

13. What will be the output of the following
code?
int main() {

int a[3] = {1, 2, 3};
int *p = a;

cout << *(a+1) << ’-’ << p[1];

}

(a) Different addresses are printed
(b) 2-2
(c) Compile time error
(d) Run time error
(e) 1-1

Version A Page 3 of 16

14. What is the difference between
for (auto x : xs) ...

and
for (auto const & x : xs) ...

(a) Only the second range-based for loop
can work if xs is const.

(b) Only the first loop will compile if x in
a fundamental type.

(c) The second range-based for loop is
able to change xs.

(d) The first range-based for loop copies
each element.

(e) They have the same behavior if if xs

is a vector of ints, but not a vector of
strings.

(f) All of the above.

15. What does the following code do?
int a = 12; auto b = & (&a);

(a) It takes the address of a reference to
an int.

(b) It makes an object of type auto.
(c) It makes a copy of the value 12.
(d) It generates a function that returns an

int.
(e) It makes a reference to an address of

an int.
(f) None of the above.

16. Which of the following C++ keywords
causes a loop to immediately repeat (skip-
ping the rest of the loop’s body)?

(a) continue

(b) break

(c) repeat

(d) catch

(e) switch

(f) goto

17. What character is used to denote the end
of a statement?

(a) >
(b) ′

(c)]
(d) ;

(e))

(f) ”
(g) None of the

previous.

18. What does the following code output?
int x = 9;

while (x = 4) {
cout << x;

cout << x++;

if (7) break;

cout << x;

}
cout << x;

(a) 9

(b) 4

(c) It never ends.
(d) 9101010

(e) 991010

(f) It doesn’t compile.
(g) 455

(h) 445

19. A for loop has 4 parts (for (a; b; c)

body). After which circumstances does the
statement at position c run?

(a) After a continue statement executes.
(b) After a break statement executes.
(c) After the body finishes normally.
(d) Only (a) and (b) are correct.
(e) Only (a) and (c) are correct.
(f) All of the above are correct.

20. Which of the following (5) lines would gen-
erate a syntax error if included in a C++
file?

(a) while (cin) {
(b) for (;;) {
(c) (a = b) = 3;

(d) while (true) ;

(e) x = (y >= z);

(f) All of the above lines do not generate
syntax errors.

Version A Page 4 of 16

21. Which of the following expressions do NOT
evaluate to a true value?

(a) true

(b) x = 4

(c) ’a’

(d) 1

(e) ’a’ < ’z’

(f) 19

(g) All of the above are true values.

22. Which variables are in scope at the com-
ment?
int x = 6;

for (int i = 0; i < 5; ++i) {
char c = ’a’ + x + i;

}
// Here

(a) x and i

(b) The code will not compile.
(c) x

(d) x, i, and c

(e) None of the variables are in scope.

23. Depending on context, what can the * char-
acter mean?

(a) Multiplication Operator
(b) De-reference Operator
(c) Pointer Declaration
(d) Extraction Operator
(e) (a), (b), (c) and (d)
(f) (a), (b) and (c)
(g) (a) and (b)

24. Which of the following are NOT legal, ref-
erence initializations?

(a) string & x = string("Hi");

(b) string & x;

(c) string & x = "Hi";

(d) string & x = 4;

(e) (b) and (c) are both not legal.
(f) All of the above are legal.
(g) None of the above are legal.

25. Which of the lines indicates that the pointer
(unsigned * x;) does not point at a valid
object?

(a) x = -1;

(b) *x = -1;

(c) x = nullptr;

(d) *x = 0;

(e) x = string::npos;

(f) None of the above.

26. Which of the following lines would cause x

to hold the same value as that stored in the
memory position 0x01a?

(a) int x = 0x01a;

(b) int y = 0x01a; int x = &y;

(c) int * x = 0x01a;

(d) int * y = 0x01a; int x = *y;

(e) int * y = 0x01a; int & x = y;

(f) None of the above.

27. What is the reason to care about const-
correctness?

(a) Without it, references and pointers
would be impossible.

(b) It allows you to guarantee that a value
can’t be changed after initialization.

(c) It allows for run-time assertions to be
checked.

(d) It converts compile-time errors into
run-time errors.

(e) None of the above.

28. If you use the Address-Of operator on a
pointer to a string, what type is returned?

(a) A const string
(b) A pointer to a const string
(c) A string
(d) A pointer to a pointer to a string
(e) A pointer to a string
(f) None of the above

Version A Page 5 of 16

29. Which of the following statements will NOT
cause a for loop to terminate?

(a) break
(b) return
(c) continue
(d) All of the above will terminate a for

loop.

30. If curly braces {} aren’t used to bound the
body of a flow control statement (like if),
what does that imply about the body?

(a) That it will generate a compiler warn-
ing

(b) That it must end in a semicolon
(c) That it must be indented
(d) That it is only a single statement long
(e) All of the above are true

31. What is the output from the following code
fragment?
int x = 7;

if (x) {
int y = 7;

} else {
int y = 0;

}
std::cout << x << "," << y <<

std::endl;

(a) 0,7

(b) 7,0

(c) 0,0

(d) 7,7

(e) Nothing: it is illegal C++ code

32. What is the value of z after the following
code executes?
int x=3, y=4;

int z = x*x+y*y;

(a) 144
(b) 12
(c) 25
(d) 52
(e) 84
(f) Nothing: it is illegal C++ code

33. In the following code, what is the final value
of the variable i?
int i;

for (i=1; i < 20; i += 3) i++;

(a) 1
(b) 19
(c) 21
(d) 18
(e) 22
(f) Undefined because i was never initial-

ized.

34. What will the following code print?
int counter = 0;

for (int i = 0; i < 4; i++) {
for (int j = 0; j < 5; j++) {

if (i == j) break;

counter++;

}
}
std::cout << counter << std::endl;

(a) 20

(b) 12

(c) 10

(d) 6

(e) 0

35. What is a difference between pointers and
references in C++?

(a) Pointers can be null (not point to any-
thing), while references must always
refer to something

(b) References can be passed into func-
tions, while pointers cannot

(c) Pointers can change the value of an
object, while references cannot

(d) Pointers can be invalid if the original
object is deleted, while references will
always be valid

(e) There are no differences beyond syn-
tax

Version A Page 6 of 16

36. What will the following code print?
std::string word = "TEST";

for (auto & letter : word) {
letter = letter - ’A’ + ’a’;

}
std::cout << word << std::endl;

(a) TEST

(b) test

(c) uftu

(d) t

(e) Nothing; you cannot perform math on
characters.

37. Which of the following can cause the
pointer named ptr to point at a different
object in memory.

(a) x = *ptr;

(b) x = ptr;

(c) *ptr = x;

(d) ptr = x;

38. A common idiom for reading in values from
standard input is used below. When will
this loop terminate?
char c;

while (cin >> c) {
...

}

(a) Never, the loop will run forever
(b) When punctuation is encountered
(c) When a integer or floating point value

is encountered
(d) When the End-Of-File is encountered
(e) When whitespace is encountered

39. When must you use curly braces ({}) in an
if statement?

(a) When the if statement is nested in an-
other flow control statement.

(b) When there is an else statement.
(c) When the body consists of multiple

statements.
(d) Curly braces are never required.
(e) When there is a potential for an dan-

gling else.
(f) Curly braces are always required

40. Which of the following permits the x iden-
tifier to be used to alter the value of y?

(a) int const * x = &y;

(b) None of the above allow x to alter y.
(c) int const x = y;

(d) int * const x = &y;

(e) int const & x = y;

41. Is the keyword continue allowed in an else
statement?

(a) No, but break can be used instead for
the same effect.

(b) Yes, always
(c) Yes, but only when that else state-

ment is also inside of a loop statement
(d) No, it is a compile time error

42. If you want a newline between ”one” and
”two” in a string literal, how would you rep-
resent it?

(a) "one" "two"

(b) "one" ... "two"

(c) "one\ntwo"
(d) "one" + std::endl + "two"

43. What can the user input to output ”A”?
int x;

cin >> x;

if (x == (3 || 4)) {
cout << "A";

} else {
cout << "B";

}

(a) 1
(b) 2
(c) 3
(d) All of the above
(e) None of the above

Version A Page 7 of 16

44. Fall-through means that which of the fol-
lowing is occurring?

(a) The switch statement does not com-
pile unless there is a break in each
case.

(b) The switch statement will execute
code in the case and all following cases
until a break or the end of the switch
statement.

(c) That the default case will always run
after the matching case completes.

(d) The switch statement executes the
code in the matching case, and then
immediately exits the switch state-
ment regardless of cases afterwards.

45. In C++, a variable’s scope determines what
about it?

(a) The region of the code that is able to
read/write to that variable.

(b) The amount of memory allocated for
the variable.

(c) The duration during which the vari-
able is valid.

(d) The range of possible values that the
variable can take on.

46. How many integers would the following pro-
gram print?
int x = 6;

while (x > 0) {
cout << x << endl;

x -= 2;

if (x == 2) {
break;

}
}

(a) 0 (nothing is printed)
(b) 1
(c) 2
(d) 3
(e) 4
(f) 5
(g) 6

47. How many integers would the following pro-
gram print?
for (int x = 0; x < 4; ++x) {

if (x == 2) {
continue;

}
cout << x << endl;

}

(a) 0 (nothing is printed)
(b) 1
(c) 2
(d) 3
(e) 4
(f) 5
(g) 6

48. What is the output from the following
code?
double x = 1.05;

double y = 3.15;

double z = y / x;

if (x < z) std::cout << "ONE ";

if (y < z) std::cout << "TWO ";

else if (x+y > z) std::cout <<

"THREE ";

(a) TWO

(b) TWO THREE

(c) ONE THREE

(d) THREE

(e) ONE

(f) ONE TWO

(g) ONE TWO THREE

49. What is the name of the ampersand (&) op-
erator?

(a) None of the above
(b) The dereference operator
(c) The and operator
(d) The address-of operator
(e) The pointer operator

Version A Page 8 of 16

50. What is x in this declaration?:
const string * x;

(a) A pointer to a string
(b) A pointer to a constant string
(c) None of the above
(d) A constant pointer to a constant

string
(e) A constant pointer to a string
(f) Syntax Error

51. Can you declare (without initialization) a
reference?

(a) No
(b) Depends on if the reference is const
(c) Depends on if the reference is for a

fundamental type

52. How do you stop fall-through behavior?

(a) By ensuring that you have a break at
the end of each case

(b) By using a conditional statement to
check for const expressions

(c) By ensuring that you have a default
case

(d) You can’t stop fall-through, it is man-
dated by the C++ language

53. When you increment a pointer, for instance:
++pointer variable;

What happens?

(a) The pointer now points to the next
address in memory

(b) Nothing happens, because the prefix
increment was used, only the value re-
turned is affected

(c) A syntax error is thrown by the com-
piler as pointers can’t be incremented

(d) Undefined behavior, the language
specification doesn’t specify what will
happen, so the result is undefined

(e) The value at the pointer’s address is
incremented by one

54. How many iterations of the while loop will
occur?
while (7) {

int x = 4;

++x;

if (x > 6) {
break;

}
}

(a) 0 iterations
(b) 1 iteration
(c) 2 iterations
(d) 4 iterations
(e) 6 iterations
(f) 7 iterations
(g) more than 13 iterations

55. What is a pointer’s value?

(a) A signed long
(b) A const reference to another object
(c) An address in memory
(d) The value nullptr unless it was ini-

tialized or assigned
(e) All of the above

56. The continue statement is different from
the break statement in one key way, what
is it?

(a) It always creates an infinite loops,
unless a break statement is also in-
cluded.

(b) It is only supported by specific com-
pilers and isn’t in the language stan-
dard

(c) It is only permitted in while loops, but
not in other iterative statements.

(d) It is actually identical to break, its
use is entirely aesthetic.

(e) It can’t be used in blocks due to the
ambiguity.

(f) It requires the use of an if statement.
(g) It causes iteration to resume instead

of cease.
(h) Its use is strongly discouraged due to

the poor habits it inspires

Version A Page 9 of 16

57. After the code below executes, which
pointers have the same value as a?
int x = 67; int y = 34;

int * a = &x;

int * b = &y;

int * c = b;

int * d = &y;

*c = 67;

*b = *a;

d = a;

*d = 34;

(a) b

(b) c

(c) d

(d) Both b and c

(e) All of b, c, and d

(f) None of them have the same value as
a

(g) The code is invalid, and thus no an-
swer can be given

58. Declaring all local variables at the begin-
ning of a function is bad practice because
it results in unnecessarily large XXXXs.
What term should replace XXXXs?

(a) Scopes
(b) Code sizes
(c) Memory uses
(d) Functions
(e) Blocks
(f) Exceptions
(g) Variable names
(h) Comments

59. Which type of pointer should you NOT
dereference?

(a) A pointer with a memory address
(b) A pointer that points at another

pointer
(c) A null pointer
(d) A pointer to a local variable
(e) A const pointer
(f) A pointer to a null character
(g) A pointer to a const object
(h) A pointer that has been assigned

60. Which of the following can you NOT make
a const reference to?

(a) A non-const value
(b) A literal value
(c) A pointer
(d) A value returned by a function
(e) A reference
(f) A const value
(g) All of the above permit const refer-

ences

61. How do you create a null reference?

(a) By assigning it the value 0

(b) By using const cast

(c) By allowing the reference’s lifetime to
end

(d) By assigning it the value false

(e) By making a reference to a derefer-
enced null pointer

(f) By subtracting one from a null char-
acter

(g) None of the above, it is impossible

62. For what values of x will this program have
a ’b’ character in the output?
switch (x + 1) {

case 0:

case 1:

std::cout << ’a’;

case 2:

std::cout << ’b’;

default:

std::cout << ’c’;

}

(a) -1

(b) 0

(c) 1

(d) 2

(e) 3

(f) -1, 0, and 1

(g) 0, 1, and 2

(h) -1, 1, 2, and 3

(i) All possible values of x

Version A Page 10 of 16

63. When will the body of the if statement ex-
ecute?
if (x || y) {

...

}

(a) Only when x is true
(b) Only when y is true
(c) Only when x and y are both true
(d) Only when one of either x or y are

true
(e) Only when x and/or y are true
(f) Impossible to determine with the in-

formation given

64. If you use the Address-Of operator on a
pointer to a string, what type is returned?

(a) A pointer to a pointer to a string
(b) A string
(c) A pointer to a string
(d) A const string
(e) A pointer to a const string
(f) None of the above

65. Which of the following statements will NOT
cause a for loop to terminate?

(a) break
(b) return
(c) continue
(d) All of the above will terminate a for

loop.

66. If curly braces {} aren’t used to bound the
body of a flow control statement (like if),
what does that imply about the body?

(a) That it must be indented
(b) That it will generate a compiler warn-

ing
(c) That it must end in a semicolon
(d) That it is only a single statement long
(e) All of the above are true

67. What is the type of x?
string const s = "hi";

string const * const ptr s = &s;

auto y = *ptr s;

auto x = &y;

(a) string const &

(b) string

(c) string const

(d) string const *

(e) string const * const

(f) string *

(g) string &

(h) None of the above.

68. Which of the following are illegal to have
two of?

(a) Two references to the same variable
(b) Two pointers to the same object
(c) Two includes of the same header
(d) Two functions with the same name
(e) None of the above are illegal

69. Presuming x is a pointer, the expression *x

will return which of the following?

(a) The address of the value of x
(b) The value of x, if x is a pointer its

address, otherwise its value
(c) The value at the address held by x

(d) The address of x
(e) The type of x
(f) The value of x
(g) None of the above

70. If char variable named c is declared, what
is the type of the expression &c?

(a) char *

(b) char &

(c) char ptr

(d) & char

(e) char

(f) None of the above

Version A Page 11 of 16

71. After initializing a reference, how do you
change what it is referring to?

(a) By changing its address
(b) By using a cast
(c) By calling a function
(d) By assigning to it
(e) By using static typing
(f) None of the above

72. How do you avoid copying an object during
a function call or in a range-for-loop?

(a) By using references
(b) By ensuring that the object is never

changed
(c) By marking it const
(d) By naming it in all capital letters
(e) By declaring a new variable
(f) It is impossible

73. If a pointer has the value nullptr, what
does that mean about the pointer?

(a) The pointer shouldn’t be used with
the unary *

(b) The pointer needs to be incremented
(c) The pointer is const
(d) The pointer is pointing at the end of

a string
(e) The pointer hasn’t been assigned a

value yet
(f) None of the above

74. When is the default case in a switch state-
ment executed?

(a) When multiple cases match the value
(b) After all the other cases execute
(c) When no value is provided
(d) When the value has a false/zero value
(e) When no other case matches the value
(f) None of the above

75. When used in a condition of an if-
statement, which of the following values are
considered true?

(a) 0

(b) false

(c) nullptr

(d) 4 != 0

(e) 7 > 8 > 9

(f) None of the above

76. After the following statements, which of the
following expressions would yield the value
232?
int a = 232;

int * b = &a;

int & c = a;

(a) *a

(b) &b

(c) &a

(d) &c

(e) *b

(f) None of the above

77. Which of the following is an assignment
(not an initialization)?

(a) char c = ’!’;

(b) int i{2};
(c) int array[] = {1, 2, 3};
(d) vec[4] = "";

(e) double & d = 4.3;

(f) None of the above are assignments

78. Which of the following statements are true
about C-style strings?

(a) "word" is an example of a C-style-
string literal

(b) It is an array of char
(c) They are different from std::string

(d) The last character is always the null
character

(e) All of the above are true

Version A Page 12 of 16

79. After the following code, which of the fol-
lowing statements would generate compile-
time errors?
double score = 98.6;

double const * grade = &score;

(a) grade = nullptr;

(b) score += 6.5;

(c) *grade = 0.0;

(d) double other = 0;

grade = &other;

(e) Multiple previous options would gen-
erate compile-time errors

80. What does the following code output?
char c = ’D’;

if (c == ’d’)

cout << 4;

cout << ’5’;

cout << "6";

(a) Nothing is output
(b) 4

(c) 45

(d) 456

(e) 56

(f) 6

(g) "6"

(h) The above code wouldn’t compile

81. In the following code, what expression is ex-
ecuted after the continue is executed?
for (int x = 0; x < 5; ++x) {

if (x % 3 == 0) {
cout << "x is divisible"

<< endl;

continue;

}
cout << "x is " << x << endl;

}

(a) cout << "x is divisible"

(b) x = 0

(c) ++x

(d) x < 5

(e) cout << "x is " << x << endl;

(f) The above code could wouldn’t com-
pile

82. What is the difference between these two
loops?
for (int x = 0; x < 5; ++x) {
\\Loop Body Omitted

}

and
int x = 0;

while (x < 5) {
\\Loop Body Omitted

++x;

}

(a) The number of iterations is different
(b) The final value of x is different
(c) The scope of x is different
(d) There is no difference

83. When will the following expression result in
a false value?
cin >> x

(a) When the get from (>>) operation
fails due to no more input being pro-
vided

(b) When the get from (>>) operation
fails due an invalid provided input

(c) When the End-Of-File character is
encountered

(d) Multiple of the above are true

84. If variable c is declared const, like as shown
below, which of the following statements
would result in an error when the program
was executed?
char const c = ’A’;

(a) c = ’B’;

(b) cout << c;

(c) c++;

(d) char c2{c};
(e) c += ’D’;

(f) None of the above would result in a
run-time error.

Version A Page 13 of 16

85. What does the following code output?
int x = 9;

while (4 = x) {
cout << x;

cout << x++;

if (7) break;

cout << x;

}
cout << x;

(a) 445

(b) 4

(c) 9

(d) 455

(e) 9101010

(f) 991010

(g) It doesn’t compile.
(h) It never ends.

86. A variable has the value 0x123ace, what is
its type?

(a) A pointer
(b) char

(c) double

(d) int

(e) Impossible to determine with the in-
formation given

87. What does the following statement do?
cin >> std::noskipws

(a) It causes std::cin to count the num-
ber of characters that are read from
standard input.

(b) It sets a flag in std::cin to cause it to
no longer skip flushing the the stream
when a newline character is encoun-
tered.

(c) It does nothing, but allows the code
to compile and run on Unix environ-
ments.

(d) It indicates that std::cin should
only provided one character at a time,
except for characters that are word
size or smaller.

(e) It causes std::cin to not ignore
whitespace characters when using the
get from operator (>>).

88. Why is the following code illegal?
int x = 7;

if (x) {
int y = 7;

} else {
int y = 0;

}
std::cout << x << "," << y <<

std::endl;

(a) Variable y is declared multiple times.
(b) Variable y is accessed outside of its

scope.
(c) Variable y is being assigned multiple

values, but a variable can only hold
one value at a time.

(d) The if-statement’s conditional isn’t
checking anything.

(e) The code above isn’t illegal.

89. What is the difference between these two
while loops?
while(true) {
\\...

}
and
while(7) {
\\...

}

(a) The first loop will execute one time,
the second will iterate 7 times.

(b) The first loop will execute an unlim-
ited number of times, the second only
7 times.

(c) The second loop won’t compile as 7

isn’t a bool value.
(d) The first loop can’t be terminated

with a break statement, the second
one can.

(e) The loops are functionally the same.

Version A Page 14 of 16

This page intentionally left blank.

