
Sample Exam Week 09
CSE 232 (Introduction to Programming II)

VERSION A

Full Name: .

Student Number: .

Instructions:
• DO NOT START/OPEN THE EXAM UNTIL TOLD TO DO SO.
• You may however write and bubble in your name, student number and exam VERSION/FORM
NUMBER (with a #2 pencil) on the front of the printed exam and bubble sheet prior to the exam
start. This exam is Version A. Your section doesn’t matter and can be ignored.
• Present your MSU ID (or other photo ID) when returning your bubble sheet and printed exam.
• Only choose one option for each question. Please mark the chosen option in both this printed exam and

the bubble sheet.
• Assume any needed #includes and using std::...; namespace declarations are performed for the

code samples.
• Every question is worth the same amount of points. There are 55 questions, but you only need 50

questions correct for a perfect score.
• No electronics are allowed to be used or worn during the exam. This means smart-watches, phones and

headphones need to be placed away in your bag.
• The exam is open note, meaning that any paper material (notes, slides, prior exams, assignments, books,

etc.) are all allowed. Please place all such material on your desk prior to the start of the exam, (so you
won’t need to rummage in your bag during the exam).
• If you have any questions during the exam or finish the exam early, please raise your hand and a proctor

will attend you.

http://xkcd.com/499/

Version A Page 1 of 8

1. What will the following code output?
std::vector<int> v{1,2,3,4};
for (auto it = v.begin() + 1;

it != v.end();

it++) {
std::cout << *it;

}

(a) 1234

(b) 234

(c) 123

(d) 23

(e) 1

(f) 2

2. When are the begin and end iterators of a
vector pointing at the same position?

(a) When the vector has just been re-
sized.

(b) When the vector has exactly one ele-
ment

(c) When the vector has been passed to
an algorithm

(d) When the vector is empty
(e) Never, the end iterator always points

after the begin iterator

3. When using a range-based for loop on a
std::map<int, std::string>, what type
is each element returned as?

(a) string

(b) auto

(c) std::pair<int, std::string>

(d) int

(e) std::map<int, std::string>

4. Which of the following does NOT return
the last element of a vector (of size 10)
named x?

(a) x.back()

(b) x[9]

(c) x.at(9)

(d) x[x.size() - 1]

(e) x.end()

(f) Multiple of the above will not work.
(g) All of the above will work.

5. Which of the following types can be iterated
over with a range-based for loop (i.e. a for-
each loop)?

(a) string

(b) int

(c) double

(d) map<int, string>

(e) vector<int>

(f) All of the above
(g) (a), (d), and (e)
(h) (d) and (e)
(i) (a) and (e)

6. What is the difference between
for (auto x : xs) ...

and
for (auto const & x : xs) ...

(a) The first range-based for loop copies
each element.

(b) Only the second range-based for loop
can work if xs is const.

(c) Only the first loop will compile if x in
a fundamental type.

(d) They have the same behavior if if xs

is a vector of ints, but not a vector of
strings.

(e) The second range-based for loop is
able to change xs.

(f) All of the above.

7. If (*v.begin() == *(v.end() - 1)) is
true, which of the following must also be
true about vector v?

(a) v.begin() == (v.end() - 1)

(b) v.begin() != (v.end() - 1)

(c) v.capacity() > 1

(d) v.front() == v.back()

(e) v.size() == 1

(f) v.empty()

Version A Page 2 of 8

8. Which of the following can be allocated dy-
namically?

(a) string

(b) vector<int>

(c) map<string, string>

(d) int

(e) double *

(f) All of the above

9. What does the following code output:
vector<int> xs = {1, 2, 3, 4};
for (auto x : xs) {
xs.push back(5);

}
cout << xs.size() << endl;

(a) 4

(b) Syntax error
(c) 5

(d) 9

(e) Undefined behavior

10. What does the following code output?
map<int, string> id to name = {
{10, "Josh"},
{20, "Emily"},
};
id to name.insert({30, "Abdol"});
string x = id to name[40];

cout << id to name.size() << endl;

(a) None of the above (it won’t compile)
(b) 4
(c) 3
(d) 2

11. How many different vector objects (in-
stances) are generated by the following
code?
bool has 1(vector<int> input) {
return find(

input.begin(),

input.end(),

1) != input.end();

}

int main() {
vector<int> v = {1, 2, 3};
vector<int> v2 = v;

cout << has 1(v) << endl;

}

(a) 1
(b) 2

(c) 3
(d) 4

(e) 5
(f) 6

12. What is wrong with the following code?
vector<int> v = {1, 2, 3};
while (v.size()) {
cout << *v.begin() << endl;

v.pop back();

}

(a) It will raise an exception because
push back will be called on an empty
vector.

(b) It will generate a syntax error because
*v.begin() you can’t dereference a
vector.

(c) It is an infinite loop because size can
never be negative.

(d) It will print 1 three times because it
is popping from the end, not the be-
ginning.

Version A Page 3 of 8

13. Which of the following iterators can be
legally deferenced for a non-empty vector
named x?

(a) x.begin()

(b) x.cbegin()

(c) x.rbegin()

(d) x.crend()

(e) (a) and (b)
(f) (a), (b) and (c)
(g) All of the above.
(h) None of the above.

14. Which of the following types provided by
the STL are not templated?

(a) sstream

(b) unordered set

(c) multimap

(d) vector

(e) All of the above.
(f) None of the above

15. In the lab where you created a SingleLink
list, what are the cases that the del func-
tion member must account for?

(a) If the argument is is the last element
in the list.

(b) If list is empty.
(c) If the argument is is the first element

in the list.
(d) If the argument isn’t present in the

list.
(e) If the argument is in the list (but isn’t

the first or last element).
(f) All of the above.

16. In the lab where you created a SingleLink
list, would a out of range exception need
to be raised for a negative indices?

(a) No, because no test case had negative
indices.

(b) No, because negative indices loop
around like in Python.

(c) Yes, because a negative index would
result in a memory leak.

(d) No, because negative indices are im-
possible.

(e) Yes, because a negative index would
access a memory position prior to the
first element.

(f) None of the above.

17. When should you call the reserve method
of vector?

(a) When you want to know the capacity
of the vector

(b) When you know the number of ele-
ments you intend to add to the vector

(c) Before you destroy it, to ensure that
all the elements are not leaked

(d) Before each call to push back to en-
sure there is space

18. A vector’s crend() returns what type of
object?

(a) An iterator pointing to the last ele-
ment in the vector

(b) An iterator pointing to the first ele-
ment in the vector

(c) An iterator pointing to one past the
last element in the vector

(d) An iterator pointing to one before the
first element in the vector

Version A Page 4 of 8

19. Which of the following types can be ele-
ments in a vector?

(a) vector<string>

(b) int *

(c) map<string, int>

(d) (a) and (b)
(e) (a) and (c)
(f) (b) and (c)
(g) (a), (b), and (c)
(h) None of the above

20. What happens when you use the []

to access a key that doesn’t exist in a
std::map?

(a) It inserts a default value for that key
and returns it

(b) It throws an exception
(c) It returns false
(d) It results in undefined behavior
(e) None of the above

21. When will a container’s begin and end iter-
ators be equal?

(a) When the container is empty
(b) They will never be equal
(c) When the container has exactly one

element
(d) When the container is const

22. In the SingleLink class of the last lab,
why should a custom destructor be imple-
mented?

(a) Because the class has a custom de-
fault constructor

(b) Because otherwise the Node’s within
would be leaked.

(c) Because the compiler would fail to
work because the class has a pointer
as a member attribute

(d) Because the Rule of Three dictates
that all classes must have a custom
destructor

(e) None of the above

23. In the SingleLink class of the last lab,
calling the append back function should
cause which of the following to oc-
cur?

(a) A vector to have increased in size by
one

(b) A call to int’s destructor
(c) A Node to be dynamically allocated
(d) A copy of the SingleLink to have

have been created
(e) None of the above

24. If a singly-linked list only had one data
member (a pointer to a Node named head),
would it be possible to determine the size
of such a list?

(a) Yes, by using head ->size().
(b) Yes, by traversing each node with a

loop, and incrementing a counter for
each one until the end (nullptr) is
found.

(c) Yes, by using the sizeof function.
(d) No, the list would require a second

data member.

25. If a vector has the values {’a’, ’b’, ’c’},
what value must be added to the itera-
tor returned by the rend member func-
tion to have it point at the ’b’ ele-
ment?

(a) Impossible to perform
(b) -3
(c) -2
(d) -1
(e) 0
(f) 1
(g) 2
(h) 3

26. At what size will a vector’s end iterator
compare less than the begin iterator (i.e.
vec.end() < vec.begin())?

(a) Never
(b) 0
(c) 1
(d) Greater than 1

Version A Page 5 of 8

27. Which of the following function members
of vector is often private (not exposed) in
other languages (like Python and Java)?

(a) Default constructor
(b) operator[]

(c) capacity()

(d) size()

28. In the lab where you created a singly linked
list, how did a Node refer to the next Node
after it?

(a) Using a non-const pointer.
(b) Using a const reference.
(c) Using a const pointer.
(d) Using a non-const reference.
(e) None of the above.

29. Which of the following vector member
functions are non-const?

(a) empty

(b) size

(c) capacity

(d) clear

30. For a vector named v, if v.front() ==

v.back(), which of the following must be
true?

(a) v’s begin and and end iterators must
also be equal.

(b) v must have a size of exactly 1.
(c) v must have a capacity of 1.
(d) v must have invoked the push back

member function.
(e) v must be empty.
(f) None of the above.

31. When you use a range-based for loop on a
map<string, int>, what type is each ele-
ment?

(a) map<string, int>

(b) int

(c) pair<const string, int>

(d) You can’t use such a loop on a map.
(e) string

32. What does the following code output?
map<string, string> name to city =

{{"Josh", "EL"},
{"Emily", "CL"}};

if (name to city["Mal"] == "DC")

cout << "In DC ";

cout << name to city.size();

(a) Undefined Behavior
(b) 3

(c) In DC 2

(d) 2

(e) Compiler Error

33. If the following line of code is legal, which
of the following are possible types for x?
auto y = x->begin();

(a) vector<string> * x;

(b) map<int, double> * x;

(c) vector<int, double> x;

(d) map<int, double> x;

(e) (a) and (b)
(f) (c) and (d)
(g) (a) and (c)
(h) None of the above.

34. Which of the following operations are legal
(i.e. will not cause an error or undefined be-
havior)?
vector<int> x {1, 2, 3};
auto y = x.cend();

(a) y[0];

(b) --y;

(c) *y;

(d) y = 5;

(e) None of the above.

35. Which of the following is FALSE regarding
std::map?

(a) A map can have duplicate keys.
(b) A map can have a pointer to it.
(c) A maps value type can be another

map.
(d) A map can be const.
(e) A map can have char values.
(f) A map can have iterators to it.

Version A Page 6 of 8

This page intentionally left blank.

